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1 Abstract:  
1.1 Objectives 
The Department of Defense needs cost-effective methods for locating and identifying navigation 
and safety hazards related to underwater military munitions (UWMM). This is a broad and 
diverse problem because historical information relating to the locations of underwater munitions 
is often limited and not always accurate. Furthermore, some munitions were dispersed over large 
areas, being dumped by vessels, dropped via aircraft, or shot as projectiles on or adjacent to live 
target ranges. 

Technologies are needed that can efficiently and objectively detect, identify, and map underwater 
military munitions. Furthermore, knowledge of benthic environments adjacent to UWMM is 
critical for remediation decisions. Managers need to know, for example, if detected munitions 
and explosives of concern are encrusted in a reef or are partially buried; are they intact or 
cracked open; are they mobile or hard-stuck in silty mud? Currently, both wide-area searches and 
detailed mapping of underwater military munitions rely on multiple acoustic (e.g. side-scan or 
multi-beam sonar) and/or metal detection methods. 

Underwater optical images of the seabed are another technology that could benefit surveys for 
UWMM as well as efforts to understand the environments around UWMM because optical 
images have very high spatial resolution. Objects on the seabed as small as a few cm in diameter 
can be easily resolved with optical imagery. In many cases, the type or condition of munitions, 
such as whether they are intact or not, can be discerned as well. Currently, however, analysis is a 
bottleneck for quantitative assessment of underwater images; therefore imagery tends to be used 
for UWMM response in only a qualitative way involving visual inspection and interpretation by 
an analyst. 

Our group recently developed a new seabed classification algorithm that has been shown to 
accurately classify benthic images from coral reefs (Shihavuddin et al. 2013). Three technical 
objectives were identified to evaluate the potential of underwater seabed images to improve both 
wide-area and detailed surveys for UWMM. First, how well can the algorithm classify munitions 
targets? Second, how well can the algorithm classify seabed types, thereby characterizing the 
environments around munitions targets? Third, would further development on the algorithm 
yield improvements in the ability to discriminate munitions and aspects of the environment? 

1.2 Technical Approach 
Prior to this project, the supervised classification algorithm we had developed had been tested 
with images of coral reefs from three different locations, and one dataset of seabed images from 
a location where UWMM were found. Based on positive results from these preliminary tests, the 
approach for this project was to use two large datasets to test the algorithm in a wider variety of 
settings. The first dataset was collected specifically for this project, using inert surrogate 
munitions placed on the seabed as known targets. The second set of tests exploited an existing 
dataset of over 30,000 images collected south of Pearl Harbor, HI, covering an area where actual 
chemical and conventional munitions were discarded over a 50-year period. Together, these 
datasets will provide an assessment of the capabilities of the current classification algorithm 
across a wide spectrum of depths, substrates, benthic biota, and munitions types. 
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In addition to tests of the existing supervised classification algorithm, we investigated the utility 
of adding additional features to the classifier that were based on the local relief, or height, of the 
seabed. Height data was generated from the input images themselves using structure-from-
motion computer vision techniques. A third dataset, also from Hawaii, was used to develop the 
modified algorithm, which was then tested on the newly collected dataset from Miami. 

1.3 Results 
The image classifier by itself was shown to distinguish munitions from non-munitions 
(background) with generally high (> 80%) accuracy. This was accomplished at multiple sites in 
shallow water over seagrass, reef, and sand, and at depths greater than 500 m in sand. 
Discrimination of environments was high for the major seabed types. For example, sand and 
mixed sand-seagrass were classified with 80-100% accuracy in both shallow and deep water. 

The image classifier by itself did not achieve > 80% accuracy for every class in every situation, 
however, even with a binary munitions/non-munitions scheme. False positive matches for 
munitions were observed in the Miami dataset over reef and seagrass, and false negatives were 
observed in the Hawaii dataset due to confusion of munitions with other anthropogenic clutter. 
These limitations indicated that, indeed, there remains a need for improvements to the algorithm. 

Extending our existing algorithm to also use height data derived from stereo reconstruction 
showed that incorporating such so-called “2.5-D” data greatly improved the classification results. 
Using the 2.5-D information reduced the number of false positives in the Miami dataset. 
Furthermore, improved accuracy was observed not only on the basic, binary munitions / non-
munitions classes. Adding 2.5-D information improved the capability to discriminate different 
types of munitions from one another. 

1.4 Benefits 
UWMM response would be enhanced by adding quantitative image analysis to the toolbox of 
survey methodologies. Furthermore, any other application requiring quantitative assessment of 
benthic communities would also benefit from the same tools. Thus, an accurate, automated 
algorithm that can classify seabed images from diverse environments would be a benefit both to 
the Department of Defense and the wider scientific community. 
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2 Objective 
2.1 SERDP Relevance 
This project tested the use of supervised classification of underwater optical imagery for the 
detection and characterization of underwater military munitions (UWMM). Optical images of the 
seabed have the potential to improve both wide-area and detailed surveys for UWMM. 
Furthermore, underwater images also have the potential to characterize UWMM as well as the 
surrounding benthic biota and substrate. These were all areas of interest according to the 
statement of need (SON) MRSEED-14-01. 

The strength of underwater images of the seabed is their high spatial resolution, which is one to 
two orders of magnitude greater than other survey technologies. The weakness of these images, 
historically, has been the labor involved to extract quantitative information from them. Thus, 
optical imagery is currently used only as an inspection tool and not as a survey methodology for 
UWMM response (Schwartz and Brandenburg 2009). Other communities, such as benthic 
ecologists, do use seabed images quantitatively, but the quantitative information is extracted 
using laborious, manual methods such as point counting (Kohler and Gill 2006). 

An automated process for classifying underwater optical imagery would reduce the analysis 
bottleneck and allow large underwater image datasets to be fully exploited for UWMM surveys. 
Efforts to automate underwater image classification have been made for well over a decade 
(Pican et al. 1998), but no single technique is yet widely accepted as robust. Our group recently 
developed a new seabed classification algorithm that has been shown on a handful of datasets to 
accurately classify benthic images from coral reefs (Shihavuddin et al. 2013). 

Evaluation of our new seabed-image classification algorithm is relevant to the SERDP SEED 
program for three reasons. First, the use of images for quantitative UWMM surveys is 
uncommon and therefore unproven or “risky.” Second, diverse pilot datasets are needed to test 
the approach. Third, if initial tests on new datasets are positive, we see a clear path forward for 
future development that is expected to improve the algorithm’s capabilities. 

2.2 Technical Objectives 
The overall objective of this proposal was to assess the potential of using underwater images of 
the seabed for the detection of UWMM and for characterizing the surrounding environment. 
Three technical objectives were the logical first step toward a long-term goal of fully integrating 
seabed imagery with other sensor types for UWMM surveys. 

Objective 1: Evaluate the potential for automated classification of underwater seabed images to 
improve both wide-area and detailed surveys for UWMM.  

Objective 2: Evaluate the potential for automated classification of underwater seabed images to 
improve characterization of the environment surrounding UWMM by discriminating bottom 
types in general (rock, sediment, seagrass etc..) as well as identifying specific coral species. 

Objective 3: Test the assumption that further improvements to the current generation of seabed 
classification algorithms will yield further improvements in the ability to discriminate munitions 
and aspects of the environment, such as coral species identification. 



4 

The technical objectives of this proposal were a logical proof of concept step toward the long-
term goal of this work, which is to incorporate optics into a multi-modal approach to UWMM 
surveys. In such an approach, seabed images would be used along with acoustics, 
magnetometers, and active source electromagnetic arrays. The rationale for this approach is that 
each sensing modality has its strengths and weaknesses, so using multiple techniques together 
should result in improvements over any single technology (SERDP and ESTCP 2007).  

High spatial resolution is the primary strength of optics. Images of the seabed can be acquired 
with cm to sub-mm spatial resolution, which is sufficient to accomplish many of the goals of the 
statement of need (SON). It’s clear that an analyst can visually distinguish different types of 
munitions, assess the condition of munitions, discriminate munitions from clutter, assess the 
surficial environment around munitions, and identify benthic biota. The research question that 
needs to be addressed is whether these processes can be automated so that wide areas of 
investigation can be processed efficiently and incorporated into geospatial data products. 

The technical objectives that are needed to achieve the long-term goal, therefore, are a) to 
develop classification methods that fuse optical images with other co-located data sources such 
as acoustics and magnetics, and b) to improve automated seabed classification from optical 
seabed images (Fig. 1). The starting point for this goal was our existing seabed classification 
algorithm (Shihavuddin et al. 2013). In the long term (gray box in Fig. 1), the approach for data 
fusion will start with the existing optical algorithm and combine it with classification methods 
for complementary acoustic and magnetic datasets. Likewise, in the long term, the approach for 
automated seabed classification will be to improve on the existing optical algorithm by 
incorporating new features based on shape and scale. 

 

Figure 1. Project objectives in the context of long-term research goals:  The long-term goal of using 
optical imagery of the seabed to improve the detection of UWMM and improve characterization of 
the environment surrounding UWMM requires additional development. The gray box indicates the 
future development path for a multi-modal approach to UWMM surveys. As a proof-of-concept, 
this project tested how well our existing algorithm can work on its own, and explored the degree to 
which monocular stereo features, which is one of the envisioned future enhancements, could 
improve on the existing algorithm. 
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In the short term, this proof of concept study will reduce the risk of investing in extensive 
algorithm improvement by demonstrating the potential of the existing algorithm, and the 
potential benefits of improving the existing algorithm (Fig. 1 not including gray box). 

Background 
Underwater military munitions have generally received less attention than munitions on land 
because of the perceived lower risks of human exposure as well as the cost of detecting, locating, 
classifying, and removing underwater munitions compared to remediation on land. Furthermore, 
historical information relating to the locations of underwater munitions is often limited and not 
always accurate. Some munitions were dispersed over large areas, being dumped by vessels, 
dropped via aircraft, or shot as projectiles on or adjacent to live target ranges. Nevertheless, in 
response to requirements in the John Warner National Defense Authorization Act for FY 2007, 
109-364, Section 314 (b)(1), the Department of Defense needs cost-effective methods for 
locating and identifying navigation and safety hazards related to UWMM and must provide that 
information to the Secretary of Commerce to assist the National Oceanic and Atmospheric 
Administration in preparing nautical charts and other navigational materials for coastal waters. 

On land, a multi-modal approach (i.e. one in which multiple survey technologies are used) to 
discarded munitions mapping has proven successful (Nelson et al. 2008; Foley and Hodgson 
2010; Keranen and O'Neil-Dunne 2010). Underwater, different tools must be used, but a multi-
modal approach is expected to have similar success (Schultz et al. 2009). No single technology 
works best in all situations. A layered approach using several different survey technologies 
provides the most robust solution. 

High spatial resolution is the primary advantage to including images of the seabed in UWMM 
surveys. Objects on the seabed as small as a few cm in diameter can be easily resolved with 
optical imagery (Fig. 2). In many cases, the type or condition of munitions, such as whether they 
are intact or not, can be discerned as well (Fig. 2B, 2C). Currently, however, both wide-area 
searches and detailed mapping of UWMM rely on multiple acoustic (e.g. side-scan or multi-
beam sonar) and/or metal detection methods (SERDP and ESTCP 2007; Schwartz and 
Brandenburg 2009). Images tend to only be used for UWMM response in a qualitative way, for 
visual inspection and interpretation by an analyst (Schwartz and Brandenburg 2009). 

One reason imagery has not been widely used for quantitative UWMM mapping is that optics are 
not appropriate in every situation. Nevertheless, imagery is a critical asset in shallow water with 
good visibility and exposed munitions on the seafloor. Such locations are high-priority areas for 
UWMM management. Locations with good visibility and shallow depths (i.e. < 40 m 
recreational SCUBA limit) are favored sites for human recreation. Rocky seabeds, such as coral 
or bedrock reefs, where munitions are likely to be exposed, are also areas that attract fishing and 
diving activity. When shallow, rocky areas with good visibility contain munitions, public use for 
recreational boating, diving, snorkeling, and swimming increases risk of human exposure and 
public concern. Furthermore, rocky seabeds are also the areas where traditional magnetometer 
and electromagnetic geophysical surveys are least effective due to increased standoff 
requirements in order to avoid colliding with the bottom. Additionally, new methods of obtaining 
imagery in limited visibility are currently being developed (Schechner and Karpel 2005) that 
should expand the utility of this method. 
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A second reason imagery has not been widely used for quantitative UWMM mapping is that, 
until recently, obtaining data over large areas was difficult due to the small footprint of 
individual images. This obstacle has largely been eliminated in the past decade with the 
widespread availability of digital cameras, associated advancements in batteries and storage, and 
increased sophistication and availability of platforms such as remotely operated vehicles 
(ROVs), autonomous underwater vehicles (AUVs), and towed bodies. Additionally, images can 
be stitched together to form mosaics of the seabed covering 100’s to 1000’s of m2 {Lirman, 2007 
#593 and Fig. 2}. It is now easy and common to collect more imagery than can be practically 
analyzed by hand. 

The third reason imagery has not been widely used for quantitative UWMM mapping is that it 
has traditionally required laborious manual analysis. Software packages such as CPCe (Kohler 
and Gill 2006) have facilitated the extraction of quantitative information from imagery, but 
humans are still “in the loop.” The full potential of optical imagery for seabed mapping will not 
be realized until automated classification is implemented, hence the need for research into these 
methods. 

Efforts to automate classification of the seabed using optical imagery have been made for well 
over a decade (Pican et al. 1998; Marcos et al. 2008; Pizarro et al. 2008; Stokes and Deane 2009; 
Beijbom et al. 2012) but no single algorithm is yet widely accepted as robust. A few of the most 
challenging obstacles to classification accuracy in natural environments include: significant 
intra-class and inter-site variability in the morphology of benthic organisms, complex spatial 
borders between classes on the seabed, subjective annotation of training data by different 
analysts, variation in viewpoints, distances, and image quality, limits to spatial and spectral 
resolution when trying to classify to a free taxonomic scale, partial occlusion of objects due to 
the three-dimensional structure of the seabed, lighting artifacts due to wave focusing, and 
variable optical properties of the water column. 

To overcome some of these challenges, a seabed classification algorithm for optical images was 
recently developed by our team. The algorithm uses a feature vector computed from completed 
local binary pattern (CLBP), grey level co-occurrence matrix (GLCM), Gabor filter response, 
and color histograms. Either k-nearest neighbor (KNN), support vector machine (SVM) or 
probability density weighted mean distance (PDWMD) classifiers can be used, depending on the 
characteristics of the dataset (Shihavuddin et al. 2013). The algorithm has been tested on datasets 
from Florida, USA, Moorea, French Polynesia, and the Red Sea with overall accuracy of 96% on 
14 classes, 85% on 9 classes, and 97% on 8 classes, respectively (Shihavuddin et al. 2013). The 
method uses both texture and color, and, based on the datasets previously tested, was a good 
starting point for discrimination of UWMM. 

Our objectives 1 and 2 followed directly from the results obtained thus far from our seabed 
classification algorithm (Shihavuddin et al. 2013). The next step for evaluating its potential use 
in UWMM surveys was to test it on a) a more extensive set of images containing munitions, and 
b) on seabeds in different environments besides the high-coral cover areas used in Shihavuddin 
et al. (2013). Objectives 1 and 2 did not require altering the existing code, but we could already 
foresee many ways improvements could be made (Fig. 1 gray box). One way to do so was to 
include some information about the roughness, or 3D shape, of the seabed in the algorithm.  
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The topographic structure of a scene can be inferred optically in several ways, including stereo 
cameras, structured light, or with a single moving camera, using a class of methods referred to as 
monocular structure from motion (SfM). All three methods have pros and cons and each would 
be addressed in a full treatment of the problem (Fig 1). In this project, we focused only on 
structure from motion, however, in order to illustrate the benefits of including topographic relief 
in the classification process without requiring any additional hardware to acquire the data.  

Using SfM, structure was recovered by simultaneously searching for the camera positions and 
points on the seabed that best complied with the observed images. The microbathymetry (i.e. cm-
scale bathymetry) recovered from SfM can assist scene understanding and automated 
classification because relief is independent and complementary to color and texture, which are 
the sources for 2D features used in classification. 

A considerable body of literature exists on the topic of classification from sonar bathymetry 
(Atallah and Smith 2004) and backscatter (Foster et al. 2013), which are analogs to optical 
microbathymery and image color/texture. There are very few previous studies using of optical 
microbathymetry for characterizing natural underwater environments, however. Recent work by 
Friedman et al. (2012) illustrated the measurement of multiscale rugosity from stereo imaging, 
but it was not used for feature extraction or automated classification. Objective 3 helped fill this 
gap by combining texture and structure information in the classification process and applying it 
to UWMM. 

3 Materials and Methods 
3.1 Dataset 1: Ordnance Reef, Hawaii 
The Ordnance Reef dataset was collected by the National Oceanic and Atmospheric 
Administration (NOAA) at the “Ordnance Reef” site off of Waianae, Hawaii by divers using a 
hand-held high-definition video (HDV) camera.  Divers swam a series of parallel transects over 
an area of approximately 20 x 20 m collecting video with the camera pointed vertically down at 
the seabed. During processing, individual frames were grabbed from the video stream and 
subsampled by removing every other scan line to remove interlacing effects because the camera, 
a Sony HDR-XR520V, did not have progressive scan capability. The resulting frames were then 
composited into a mosaic using the technique described by Lirman et al. (2007). The resolution 
of the Ordnance Reef mosaic (Fig. 2) was 7,949 × 8,444 pixels at ~2.5 mm per pixel. 

3.2 Dataset 2: Sand, Reef, Seagrass Sites, Miami 
A team of WRT personnel and UM divers collected underwater images during the last week of 
May 2014 at four sites off the coast of Key Biscayne, FL (Fig. 3). Unexploded ordnance (UXO) 
surrogates and inert UXO were used as test objects (Fig. 4). The four sites were chosen based on 
seabed types. Three sites were used to gather data over different seabed types: bare sediment 
(sand), seagrass, and coral reef. A fourth site was chosen in an attempt to acquire data along the 
transitions between these seabed types: seagrass gradually transitioning into sand, for example. 
We were successful at finding a site with sand, seagrass, and low-relief hardbottom with some 
corals all within reasonable proximity of one another (~30-40 m radius). The actual conditions at 
this “mixed” site ended up having very distinct boundaries between the seabed types, however. 
Therefore, the data from all four sites fell into one of three categories (sand, seagrass, or reef, 
e.g. Fig. 5). 
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Figure 2. Ordnance Reef mosaic:  (A) Landscape mosaic from Ordnance Reef off of Waianae, 
Hawaii depicting branching, lobate, and encrusting corals, a variety of fish, and several 5-inch 
projectiles proud on the bottom. Total area covered is approximately 450 m2 with 2.5 x 2.5 mm 
pixels. Insets (B) and (C) show portions of the landscape mosaic at full resolution and give an idea 
of the detail available. The high resolution provided by underwater imagery affords UWMM 
detection, discrimination from background clutter, and classification. What is needed is a method 
to reliably automatically segment the optical images. (D) Side-scan sonar image including the same 
area shown in (A). Total area covered is 2500 m2 with 30 x 30 cm pixels. Note how much more 
difficult it is to identify targets due to the lower resolution of the side scan image. 

At each of the four sites, the test objects were lowered to the seabed then arranged by divers into 
two parallel rows containing 8 targets each. The targets were separated by ~2 m along each line 
and the two lines were themselves separated by ~3 m. The goal was to place the objects in such a 
way that when taking images from an overhead viewpoint, most of the images contained one 
target, but some contained none, and some contained two. Once the objects were placed, a diver 
swam over them with an array of cameras. After the diver with the cameras made a pass over the 
targets, a second diver then moved all of the targets ~1 m in the same direction, then the diver 
with the cameras made another pass. In this way, the parallel lines of targets migrated across the 
seabed and many images of each target were acquired in different poses and over different small 
patches of seabed. Using this technique we achieved a large sample size of replicate images of 
targets with only a limited number of known objects. 

Data were collected simultaneously using four cameras, enabling the investigation of the effects 
of resolution on classification accuracy. Two GoPro Hero 3+ cameras were used, with one set to 
record high-definition (1080 x 1920 pixels), progressive-scan video, and the other set to record 
11 Megapixel (3000 x 4000 pixels) still images at 1 s intervals. In addition, two Nikon D7000 
digital SLR cameras were used to record 16 Megapixel still images at 1 s intervals; one SLR 
used a 24 mm lens whereas the other used a 56 mm lens. 
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Figure 3. Sites of data collection near Key Biscayne:  This image from Google Earth shows the 
island of Key Biscayne, FL and the locations of the four sites used to collect the Miami dataset.  

 

Figure 4. Test targets used for data collection near Key Biscayne:  A - BDU-28 Submunition, B - 
60mm Mortar (without fuze nose, pitted brown, with tail), C - 60mm Mortar (with fuze, with tail, 
inert training round; ATC standard target), D1 - 81mm M43A1/M49A2 Mortar (Blue Training 
Round, No Fuze), D2 - 81mm M43A1/M49A2 Mortar (Blue Training Round, No Fuze), E - 81mm 
Mortar (with fuze), F - 81mm M821A1/M889A1 (empty) High Explosives (HE) Mortar (with fuze), 
G - 2" Rocket APFSDS-T M735, H - 76mm Projectile (no fuse), I - 3" Armor Piercing Projectile 
MK28 Type A, J - 90mm Projectile (no widscreen), K - 90mm High Explosive (HE) Projectile M71, 
L - APDS Adapter with End Cap and Cartridge, M - 105mm Projectile (Blue Training Round), N - 
105mm Projectile (with band and solid tip), Z - 155 mm Howitzer Projectile. 
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Figure 5. Example images containing test objects on the three seabed types contained in the Miami 
dataset:   Left: 90 mm projectile and 155 mm Howitzer projectile on sand. Center: 105 mm 
projectile and 76mm projectile on seagrass. Right: 76 mm projectile and 2" rocket on reef. 

3.3 Dataset 3: HUMMA (Deep Water), Hawaii 
The Hawaii Undersea Military Munitions Assessment (HUMMA) project developed methods 
and collected extensive datasets designed to evaluate the condition and potential impacts of both 
conventional and chemical munitions on the underwater environment and the impacts of the 
underwater environment on the munitions (Edwards et al. 2012). One of the datasets collected 
during HUMMA consisted of nadir-view images taken by a drop-camera system developed by 
the Woods Hole Oceanographic Institution (WHOI) and operated by WHOI staff during the 
HUMMA cruises.  This instrument, named the “TowCam”, was a deep-water digital camera 
system towed and connected to a ship via a standard 0.322-inch (8.18-mm) coaxial cable 
(Fornari and The WHOI Towcam Group 2003).  Still images from its 16-megapixel Nikon 
D7000 DSLR camera were 4928 x 3264 pixels and were acquired at 10 second intervals.  
Illumination for the photographs was provided by a Benthos 383 strobe electronics unit and two 
Benthos 386 flash heads with each head providing 300 watt/seconds of illumination. The 
TowCam had a large “tail” that provided stability and the coaxial cable provided the winch 
operator with access to real-time depth and altitude information that allowed the system to be 
steadily towed at an altitude of 4-8 m above the seafloor with each photograph capturing a 
bottom area of between 15 and 35 square meters.  While deployed, the TowCam was tracked 
using the ship’s GPS navigation and an ultra-short baseline acoustic positioning system.  The 
TowCam traversed the area at about 0.5 ± 0.25 knots (0.9 ± 0.45 km/hr).  Two green scaling 
lasers in the camera’s field of view provided a 20-cm length reference on each of the photos. 

The 17 nighttime surveys conducted during HUMMA with the TowCam from November 23 to 
December 4, 2012, required 72 hours to complete and provided linear coverage of approximately 
109 km. Over 32,000 images were collected, which exceeded a manageable number that could 
be analyzed for this initial report. Thus, for testing the classification algorithms we used a subset 
of the images, which had previously been inspected by a human analyst. Kelley et al. (in press) 
inspected the images from four of the 17 transects (Fig. 6).  

The vast majority of the images in HUMMA transects TC-10, TC-13, TC-15, and TC-17 
contained only bare sediment. Nevertheless, Kelley et al (in press) identified 221 images with at 
least one object in addition to the bare substrate. We grouped these objects into one of 7 types 
following the identifications done by Kelley et al (in press): Natural, M47 bomb, bomb – other, 
munition - projectile, munition – other, debris – all types, unknown (Fig. 7, Table 1). Then, in 
order to try to have roughly even numbers of objects, we randomly selected as many as possible 
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up to 12 images containing each type of object to use as a training set and as many as an 
additional 2 images of each type to use as a validation dataset. 

 

Figure 6. Locations of the four transects that were the source for the HUMMA images used in this 
study:   Mixed multibeam (colored) and side scan (grey scale) map of the study site showing the 
TowCam transects (TC-XX), locations of known M47A2 bombs (red dots), bathymetric contours in 
meters (black lines). Image source: Kelley et al. (in press). 

   

Figure 7. Example images from the HUMMA dataset:   These full-frame images from the TowCam 
cover areas of about 7 x 5 m and have been contrast-stretched to enhance detail. Left: image 
containing a M47A2 bomb. Center: image containing ordnance classified for our purpose as 
“bomb-other” in the lower-left and a box classified as “debris” in the center-right. Right: image 
containing multiple objects classified as “munitions – projectile.” 

3.4 Image Classifier 1: Original Girona Algorithm 
All three of the datasets described above were processed using our existing image classification 
algorithm (Shihavuddin et al. 2013), hereafter referred to as the “Girona algorithm.” The Girona 
algorithm used a supervised classification approach. Thus, for each dataset, we defined a set of 
classes and a set of analyst-defined points (i.e. “reference” or “ground truth” points). The points 
picked by the analyst were first randomly selected. Hardly any random points fell on the test 
targets, however, because as a percentage of the area covered by the dataset the “background” 
classes dominated. Thus, additional, non-random ground truth points were added by the analyst 
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to ensure that at least 100 points were defined for each class being used. Note, the background 
classes, for example sand, had perhaps an order of magnitude more points defined in each dataset 
than the rarest of target classes. 

Only two classes were used for the Ordnance Reef mosaic: 5-inch shells and background. The 
HUMMA dataset used 8 classes (Table 1) and the Miami dataset used 36 classes (Table 2).  

Table 1. Classes used for the HUMMA dataset:   All 8 classes were used for processing with the 
Girona algorithm. As part of analyzing the results, these classes were consolidated into Background 
and Munitions Types (5 classes) and also a binary Munitions / Not Munitions classification scheme. 

 

Table 2. Classes used for the Miami dataset:   All 36 classes were used for processing with the 
Girona algorithm. As part of analyzing the results, these classes were consolidated into Background 
and Munitions Types (15 classes) and also a binary Munitions / Not Munitions classification 
scheme. 
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The Girona algorithm classified all the data into one of the 2 (for Ordnance Reef), 8 (for 
HUMMA), or 36 (for Miami) classes. Results assessment (Section 3.7), was conducted first on 
the classification using all the classes but then also on reduced sets of classes we called 
“munitions types”, which was all background consolidated into one class, and finally on “binary” 
classes, which was munitions vs. not munitions (Tables 1, 2). 

3.5 Image Classifier 2: WRT Feature Sets 
The Girona algorithm (Shihavuddin et al. 2013) was based entirely on image color and texture 
features. Despite incorporating a wide variety of such features, one question regarding such an 
approach was always whether some other set of feature descriptors would work better. In order 
to address this question, we assessed the potential of a different set of features, which were 
derived by the WRT team based on previous success in radar and IR image analyses (Kreithen et 
al. 1993; Dell'Acqua and Gamba 2003; Ho et al. 2008; Nakatsu et al. 2012).  

The image-based features developed by WRT were derived from several categories:  physics-
based, statistical-based, correlation-based, texture-based, wavelet and fractal-based, and energy-
based. Each category provided multiple methods for measuring similarities and differences 
between targets and clutter. These features were distinct from the physics-based radar features 
that measure physical properties of the targets and were extracted from phenomenological 
models. Statistical-based features measured the statistical attributes of a region such as mean 
value, standard deviation, skewness, and kurtosis. Correlation-based features measured the level 
of spatial correspondence between target and clutter objects. Texture-based features provided 
information regarding the spatial interrelationships and arrangement of basic elements and were 
based on image histogram, gray-level co-occurrence matrix, gradient matrices, and wavelet 
transforms. Fractal-based features were used to estimate fractal and non-fractal behavior. 
Energy-based features utilized intensity-, amplitude-, or texture-based statistics to characterize 
detected regions. For each of these categories, multiple features were computed. In total, 63 
image features were calculated, each from one of the three categories below: 

3.5.1 Texture Features via Gray-Level Histograms, Co-occurrence, and Run Length: In 
first-order statistical feature analysis, information on texture was extracted from the histogram of 
image intensity values.  This approach measured the frequency of a particular gray-level but did 
not account for spatial correlations, or co-occurrences, between pixels.  Its main advantage was 
simplicity; using N distinct gray levels to compute moments of a pixel occurrence probability 
was conceptually and computationally simple.  Seven features describing the properties of the 
gray level histogram were computed: mean, variance, coarseness, skewness, kurtosis, energy, 
and entropy.   

Second-order statistic texture analysis yielded information on 2-D texture based on the 
probability of finding pairs of gray levels at set distances and orientations over a region of 
interest image.  Properties of the gray-level co-occurrence matrix (GLCM) have been extensively 
evaluated for deriving meaningful features from radar and electro-optical features (e.g. Haralick 
et al. 1973; Shanmugan et al. 1981; Ulaby et al. 1986; Dell'Acqua and Gamba 2003).  Our basic 
feature computations for GLCM textures were based on Haralick's 14 local features and 
extension thereof including contrast, mean correlated energy, entropy, homogeneity, cluster 
prominence, cluster shade, symmetry, angular second moment, smoothness, dispersion, among 
others.  We also implemented a similar but distinct approach following the texture feature coding 
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method (TFCM) proposed by Horng et al. (2002).  TFCM combines information from the gray 
level histogram and GLCM and translates an intensity image to a texture feature number matrix 
using gradient images and center-symmetric auto-correlations.  Using this new type of co-
occurrence matrix, we computed a number of features such as: coarseness, homogeneity, mean 
convergence, code entropy, and code similarity. 

Finally, we also extracted some features using extensions to higher-order statistic, but limited our 
approach based on the tradeoff between information value and increasing complexity with the 
number of variables investigated.  The gray level run length method was based on higher-order 
statistics, where information on a gray level is developed over a particular vector "run" through 
the image such as an anomaly boundary.  Coarse textures were derived from long runs and fine 
textures are dominated by short runs.  We computed a number of short and long run features for 
varying run paths and directions: short run emphasis, long run emphasis, run length uniformity, 
and run length percentage. 

3.5.2 Spatial Interest Pixels and Signal-to-Clutter Ratio Features: In addition to the low-
level texture features, we also assessed the potential of spatial interest pixels (SIPs) or interest 
points (Li et al. 2003).  A SIP is a pixel of region or points that constitute a strong interest 
strength relative other pixels or groups of pixels.  We utilized a version of interest point 
computation based on the Harris detector (Schmid et al. 2000), which derived the interest 
strength from the eigenvalues of the gradient correction matrix.  The interest strength of a local 
window or mask was determined and used to compute statistical measures of the SIP: average 
interest strength, maximum interest strength, and strength variance. 

3.5.3 Fourier Descriptors, Wavelet, and Fractal-based Image Features: Fourier analysis 
and wavelet or fractal decomposition can be used to extract features related to the texture, spatial 
wavelength, self-similarity and fractal dimension of the radar return or region of interest signal 
anomalies.  The fractional Fourier transform, in particular, was used to map the time-frequency 
distribution of images into fractional domains.  Our algorithmic implementation utilized short-
time Fourier transforms and Hu moments to compute Fourier descriptors and invariant moments 
as shape features.  In addition fractal geometry (Turcotte 1997) was used to extract features 
associated with self-similarity and fractal scale.  Specifically, we calculated the box-counting 
dimension and related Huasdorff dimension of each region of interest. 

3.6 2.5-D Extensions to the Girona Image Classifier 
As mentioned above, the Girona algorithm (Shihavuddin et al. 2013) was based entirely on 
image color and texture features. Many other types of features could be added to extend this 
basic approach, for example: shape, symmetry, absolute scale, and contextual information, 
among others. The purpose of experimenting with 2.5-D extensions to the Girona image 
classifier was to add features to the algorithm based on the height of the seabed. The idea was to 
see if adding extra information helped improve the performance of the basic Girona algorithm. 
The fundamental difference between this effort and the testing of additional features described 
above (Section 3.5) was that addition of height is a fundamentally new type of data whereas the 
additional 2-D features (Section 3.5) were new ways to process the same essential source data. 

A note on the terminology; we call the digital elevation model (DEM) approach used here a “two 
and a half dimensional” (2.5-D) method because it only captures information that can be seen 
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from the overhead viewpoint of the camera. In contrast, a true three-dimensional (3-D) method 
would require data from all viewpoints around an object and would therefore capture information 
from vertical or overhanging surfaces that can’t be seen from overhead. The rest of this section 
outlines the 2.5-D DEM generation and features. For details, see Shihavuddin et al. (2014), 
included as an appendix to this report. 

The first step to incorporating 2.5-D features was to generate a digital elevation map from the 
original dataset. We used a structure from motion (SfM) technique (see Shihavuddin et al. 2014 
for details) to generate the DEM. Note that the SfM technique requires multiple overlapping 
images for every part of the DEM to be generated. The Ordnance Reef and Miami datasets had 
sufficiently overlapping images for this purpose, but the HUMMA images were intentionally 
collected with minimal (~10%) overlap, so were not suitable for this method. Figure 8 shows an 
example of 2.5-D reconstruction of a portion of the Ordnance dataset. 

  

Figure 8. 2.5-D reconstruction of a portion of the Ordnance Reef dataset displayed as a textured 
surface (left) and as a triangular mesh (right):   Scale varies in this oblique view with the lower 
(closer) edge of the image corresponding to ~2 m on the seabed. 

Our method used a patch-based classification framework, where a sliding window was used to 
sample “patches” around regularly spaced center pixels and classify them based on available 2-D 
and 2.5-D features.  The size of the patches was dictated by the sizes of the important object 
classes. Generally, the size of the patch should be as small as possible while still being large 
enough to encapsulate distinct features of an object. At this point, choosing a patch size is still 
subjective; we tested a range of values and picked the one that worked best. For the Ordnance 
Reef dataset, 128-pixel square windows produced the best results. We found that the Miami 
datasets used a slightly larger range of 198 – 300 pixels square to produce the best results. The 
best window size for the HUMMA data also fell in this range, at 256 pixels square. 

The 2.5-D features were polynomial surface coefficients (Keren and Gotsman 1999), elevation 
statistics (Hetzel et al. 2001), slope of surface (Friedman et al. 2010), curvature (Wang et al. 
2000), surface normal (Hetzel et al. 2001), rugosity (Friedman et al. 2010) and symmetry 
(Kovesi 1997) extracted from the elevation map. Details of each feature are explained in the 
Appendix (Shihavuddin et al. 2014). 
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For the Ordnance Reef dataset we used all of the available images to generate a single mosaic 
image and DEM. The Miami datasets were not collected in a way that was amenable to this 
approach. Specifically, we were unable to make a single mosaic of all the images at a given site 
because we moved the munitions after one pass of the cameras. Therefore, for the Miami dataset 
we picked two “strips” of about 50 images from each of the reef and seagrass datasets for 
processing. Thus there were four datasets from Miami that were processed with both 2-D and 2-
5D; we called these “reef 1”, “reef 2”, “seagrass 1”, and “seagrass 2.” 

3.7 Classification Assessment 
Classification assessment was conducted using the error matrix approach (Congalton and Green 
1999). The error matrix uses N points within the classified dataset that have known, verified 
class identification for comparison with the classification results. The known points are variously 
called “reference” or “ground truth” data in the remote sensing literature and, in general, they 
may be used either for training the classifier, testing the classifier, or both.  

Ideally, a large sample N1 would be used for training, and an independent, equally large sample 
N2 would be used for evaluating the results. Most often, however, generating the reference data 
turns out to be one of, if not the most, expensive item in a remote sensing study, so the training 
sample N1 turns out to be larger than the evaluation sample N2.  

In this study, the sample sizes N1 and N2 varied for the different datasets. The Ordnance Reef 
dataset had N = 10,681 and used 10-fold cross validation for accuracy assessment. In 10-fold 
cross validation, 90% of the N samples were used for training (N1 = 9,613), then the remaining 
10% were used for validation (N2 = 1,068). This was repeated 10 times, generating new training 
and validation sets with random subsets each time and the results averaged. For the Miami 
dataset, N1 and N2 varied by site and camera because a minimum of N = 400 points were 
randomly selected for each site and camera combination then a variable number of non-random 
points were added by the analyst to fill in the less-frequently observed classes. For the Miami 
dataset 1216 <= N1 <= 2716 and 248 <= N2 <= 548. Assessment of the Miami dataset did not use 
cross validation. Instead, the error matrix for each site/camera combination was computed both 
from the training data and from the validation data. For the WRT features computed from the 
Miami dataset, N = 436 all used for training. Validation for the WRT feature dataset was 
performed on the training data. For the HUMMA dataset N1 = 9818 and N2 = 728. 

A simple example error matrix will help clarify the terminology used in the results, below. 
Assume a hypothetical dataset had N = 400 ground truth points divided between two classes (C1 
and C2) as shown in Figure 9A. Normalizing the raw error matrix in different ways produces 
different measures of the quality of the classification. The simplest metric is the overall accuracy 
(OA), which is the number of reference points correctly classified divided by the total number of 
reference points. Normalizing the error matrix by the row or column sums reveals two other 
metrics called “Producer’s” and “User’s” accuracy, respectively (Congalton and Green 1999; 
Figs. 9B, 9C). Normalizing by the row sums, (i.e. the number of points in each class in the 
reference dataset), gives an indication of the rate of false negatives on a per-class basis. In our 
example, we see that class 1 had an 80% accuracy with respect to false negatives; in other words, 
20% of the points that should have been class 1 were actually classified as class 2. On the other 
hand, class 2 had no false negatives; all of the points that should have been classified as class 2, 
were in fact classified that way. Conversely, normalizing by the column sums, (i.e. the number of 
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points in each class in the classified, or predicted, dataset), gives an indication of the rate of false 

positives on a per-class basis. In our example, we see that class 1 was 100% accurate with 
respect to false positives; every pixel that was classified as class 1 was in fact class 1 in the 
reference dataset. On the other hand, class 2 was only 92% accurate with respect to false 
positives; 8% of the points that were classified as class 2 were actually class 1. 

 

Figure 9. Hypothetical error matrix for two classes with N=400 reference data points:   (A) raw 
error matrix. (B) Producer’s accuracy, which is the raw matrix normalized by the row sums. (C) 
User’s accuracy, which is the raw matrix normalized by the column sums. The overall accuracy 
(OA) is the sum of the raw counts on the diagonal normalized by N. Note that producer’s accuracy 
is an indication of false negatives whereas the user’s accuracy is an indication of false positives. 

The assessment of the WRT feature set involved some extra steps beyond those for the Girona 
algorithm and its 2.5-D extension. These steps involved dimensionality reduction by assessment 
of which features were most useful for class discrimination. In fact, these same steps were 
included in the Girona algorithm, just that they are performed in a non-interactive way using 
either principal components analysis (PCA) or the Fisher kernel (Shihavuddin et al. 2013). 

For the WRT feature set, a combination of manual outlining and semi-automated image 
segmentation led to identification of 374 regions of interest (ROIs) from the Miami dataset.Of 
these, 311 ROIs were around background features, and 63 ROIs were around targets. The 63 
WRT features (Section 3.5) were computed for each of the 374 ROIs.  

The first step of the assessment was to determine which of the 63 features best discriminated 
between targets and background. In other words, which of the features were useful for 
classifying munitions vs. background. Non-parametric statistical measures were used to assess 
the 63 features based on single-feature distribution analyses. The distance measures included 
Mann-Whitney and Wilcoxon Rank Sum statistics metrics, Information Gain, Mahalanobis and 
Fisher linear statistics, and the Gini Index. 

After determining the most useful features, several of the most-promising ones were used to 
classify munitions vs. background using a discriminative statistical approach. With 
discriminative analysis, we were not seeking to explain the underlying distributions of the 
features in a physically meaningful way, but rather we were only concerned with identifying 
decision boundaries which provided an optimal separation of classes (the classes in this case 
being munitions and not-munitions). Optimality was defined by minimizing the probability of 
misclassifying a new feature vector. Examples of discriminative classifiers include Support 
Vector Machines and Linear Discriminant Analysis.  In this work we used a quadratic classifier 
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to discriminate between the classes. Finally, the results of the class separation were assessed 
using the overall accuracy computed from error matrices, as described above. 

4 Results and Discussion 
General trends in the dataset were summarized using the overall accuracy (Table 3), which was 
defined as the number of correctly classified reference points as a percentage of the total number 
of reference points available for a given dataset (Fig. 9A). One apparent pattern was that OA 
computed using the training data was higher than OA computed using independent validation 
data. The exception to this trend was for the Miami data over sand, but later, in Section 4.2.2, we 
show that although the accuracy of the sand class increased in this case, the accuracies for the 
individual munitions classes did not all increase over sand using the validation data.  

A second clear pattern that emerged from the OA data (Table 3) was that accuracy increased as 
fewer classes were used (i.e. OA of All Classes < OA of Munitions Types < OA of Binary). As 
shown in Sections 4.2 and 4.3, this general trend was robust at the individual class level also.  

Finally, a third trend observed in the OA results (Table 3) was that accuracy for datasets using 
the 2.5-D algorithm was greater than using just the 2-D algorithm. There was an increase of 
approximately 20 percentage points in overall accuracy for the two subsets of the Miami reef 24 
mm data that were processed with the 2.5-D algorithm relative to the versions processed with 
just the 2-D algorithm. The increases were closer to 30 percentage points for the two subsets of 
the Miami seagrass 24 mm data processed with the 2.5-D algorithm relative to the data processed 
with only the 2-D algorhtm. There was a small increase noted for the Ordnance Reef dataset as 
well, though less dramatic than the Miami data because the 2-D results were high to begin with 
at Ordnance Reef. 

 

Table 3. Summary of overall accuracy computed for various datasets and processing options:   The 
overall accuracy (OA) is the percentage of correctly classified points out of the total number of 
reference points. Note general trends: Training OA was higher than validation OA, except for the 
Miami sand data. OA increased as fewer classes were used (i.e. All Classes < Munitions Types < 
Binary). OA on datasets using the 2.5-D algorithm was greater than using just the 2-D algorithm. 

Even though the overall accuracy (Table 3) gave a good summary of the main results, as 
discussed in Section 3.7, overall accuracy does not present the full picture of the results because 
it does not show class-by-class information and because it is skewed if the reference data are not 
equally distributed among the classes. Therefore, more details for each dataset are presented in 
the following sections. Results using the original Girona algorithm and the 2.5-D extension to the 
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original Girona algorithm are presented for the first two datasets: Ordnance Reef, Hawaii and the 
Miami environments. The original Giorna algorithm was also applied to the HUMMA dataset 
but the 2.5-D extension could not be used with the HUMMA data because there was not enough 
overlap between successive frames to enable stereo reconstruction. Results for the Miami dataset 
are also presented using the alternate 2-D image classifier constructed by WRT. 

4.1 Ordnance Reef, Hawaii 
Using the N = 10,681 reference points with 10-fold cross validation resulted in an overall 
accuracy of 96% using the 2-D Girona algorithm and 97% using both the 2-D and 2.5-D features 
(Shihavuddin et al. 2014). Thus, using the 2.5-D features did improve results, but only by a small 
amount. In large part, the reason the improvement was small was because the results with 2-D 
were so good to begin with. Overall accuracy approaching 100% is extremely high in general, 
and, in this case, should be interpreted with the understanding that accuracy assessment can be 
strongly affected by random chance for datasets with small numbers of classes (2 in this case) 
and / or one dominant class (background was 93% of the total number of pixels). Shihavuddin et 
al. (2014) accounted for chance agreement in the accuracy assessment with additional statistical 
measures called the kappa coefficient (Congalton and Green 1999) and the average mutual 
information index (AMI, Finn 1993), both of which accounted for random agreement when 
computing accuracy. Both kappa and AMI showed improvements in accuracy using the 2.5-D 
data over the results using just the 2-D data alone (Shihavuddin et al. 2014). 

   

Figure 10. Classified versions of the Ordnance Reef dataset:   Background on both the left and right 
panels shows a portion of the Ordnance Reef mosaic (Fig. 2) in grayscale.  Left: munitions 
identified by an analyst shown in yellow with the borders defined by hand-drawn regions. Right: 
munitions identified by the 2.5-D extension to the original Girona algorithm shown in yellow. Note 
edges of the regions defined by the automated segmentation were slightly different than the hand-
drawn result, but the number and spatial pattern of the patches agreed well with the hand-drawn 
result. 
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4.2 Miami 
The Miami dataset was the most complex of the three analyzed in this project, covering multiple 
habitat types with multiple cameras and including analysis in both 2-D and 2.5-D. In contrast, 
each of the Hawaii datasets had only one camera and one habitat type. In order to more easily 
interpret results from the various permutations of habitat and camera in the Miami data, first 
consider in detail the error matrix for 2-D analysis of one camera in one habitat (Section 4.2.1). 
This will serve as a reference when interpreting the more complex, consolidated views of 
multiple error matrices for the 2-D (Section 4.2.2) and 2.5-D (Section 4.2.3) results in the 
following sections. 

4.2.1 Example Calculations from the Miami Reef site: The Nikon D7000 images from the 
Miami reef site employed a total N1 = 2112 points to train the Girona algorithm. Following 
classification, 1824 of these training points fell along the main diagonal in the error matrix, 
resulting in an overall accuracy OA = 86% for the training dataset (Fig. 11). As was typical for 
the Miami data, this error matrix had many classes with no data (gray elements of Fig. 11). The 
primary reason for cells with no data was that not all habitat types were present in each dataset. 
For example, rows 2-4 were empty in the raw counts for this error matrix because these classes 
(macroalgae, turf algae, and seagrass, see Table 2) were not present in the reef dataset. 
Furthermore, some classes were subdivided more finely than necessary, for example classes 12-
20 were various species of corals (see Table 2), not all of which were found at this reef. Note that 
most of the munitions were present, except for class #26, 81mm mortar (with fuze). Recall that 
the images used for each test were randomly selected from the full dataset, so even though the 
81mm mortar with fuze was present at the reef site, it just happened to not be in the subset of 
images that we processed. 

As discussed and shown above (Fig. 9), the raw error matrix can be normalized by either row or 
column sums to generate “producer’s” or “user’s” accuracy, respectively. After doing both, high 
values along the main diagonals indicated that most classes had both producer’s and user’s 
accuracy > 80% for the training data used at the Miami reef site, Nikon D7000 with 24 mm lens 
(Fig. 12). The munitions component of the error matrix, in particular, had high accuracy values 
(lower right quadrant of Fig. 12). Almost all of the munitions - not just munitions as a whole, but 
the individual types - were classified with accuracy > 80%.  

Interpretation of the producer’s and user’s accuracies together gives the best picture of 
classification performance (Congalton and Green 1999). For example, the coral class (class #1; 
Table 2) had relatively low producer’s accuracy, about 25%, and very high user’s accuracy, 
100% in fact (Fig. 12). Low producer’s accuracy indicated that many pixels that should have 
been classified as coral were actually classified as something else, octocoral (class #8) and 
crustose, turf & bare (class #11), in this case. High user’s accuracy indicated that all of the pixels 
classified as coral were actually coral. Taken together this indicated that the coral class was 
underclassified. In other words, the coral class had many false negatives but no false positives.  
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Figure 11. Error matrix of N = 2112 raw counts for the Miami dataset, reef site, Nikon D7000 with 
24 mm lens:   Rows and columns are numbered 1-36 corresponding to the class definitions given in 
Table 2 (all classes). Dashed lines indicate the boundaries between habitat (#1-21) and munitions 
(#22-36) classes. The color of each cell indicates the number (see the colorbar) of sampled points 
that were defined in each class by an analyst (rows) and by the Girona algorithm (column). Gray 
cells indicate there were no sampled points with the given ground truth / classified data 
combination. Note that 86% of the sampled points fell along the main diagonal, which means the 
algorithm-derived class generally agreed with the ground truth. 

 

Figure 12. Normalized error matrix for the Miami dataset, reef site, Nikon D7000 with 24 mm lens:   
Left: Producer’s accuracy, which is the error matrix from Fig. 11 normalized by row sums. Right: 
user’s accuracy, which is the error matrix from Fig. 11 normalized by column sums. Colorbar 
indicates accuracy as a percentage. Note the red elements along the main diagonal indicate that 
most classes had both producer’s and user’s accuracy > 80%. 



22 

Reducing the number of classes is equivalent to consolidating elements of the error matrix. For 
example, the matrix shown in Figures 11 and 12 evaluated all 36 habitat and munitions classes 
considered in the Miami dataset (Table 2). However, if we were only interested in munitions 
types and willing to place everything else into a “background” class, we could consolidate rows 
and columns 1-21. Likewise, if we were only interested in a binary munitions / not munitions 
class scheme we would consolidate rows and columns 1-21 and rows and columns 22-36. When 
the Miami 24 mm reef dataset was consolidated in this way, the accuracies of the consolidated 
classes increased (Fig. 13). It is generally the case that using fewer classes results in higher 
accuracy. 

 

 

Figure 13. Two versions of a consolidated, normalized error matrix for the Miami dataset, reef site, 
Nikon D7000 with 24 mm lens:   All four of these were derived from the raw counts in Fig. 11. 
Upper row: Producer’s (left) and user’s (right) accuracy reduced to background and munitions 
types classes (Table 2). Lower row: Producer’s (left) and user’s (right) accuracy reduced to binary 
presence/absence classes (Table 2). Colorbar indicates accuracy as a percentage. Note that accuracy 
increased relative to the version with all classes (Fig 12). 
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4.2.2 Miami Dataset 2-D Results: The complete, normalized error matrix illustrated not only 
which classes have low accuracy, but also the nature of the misclassification (Figs. 12, 13). Most 
of the information in the error matrix can be gathered just from the main diagonal, however. 
Displaying the main diagonals of multiple error matrices side-by-side provided a convenient way 
to compare the performance of multiple datasets (Fig. 14). Each column in figure 14 was 
extracted from an error matrix for a different camera / site combination, which are labeled along 
the bottom axis. Each row in figure 14 corresponds to a class defined in Table 2. To help 
navigate the plot, dashed lines have been added to demark the seabed classes (rows #1-21) and 
the munitions classes (rows #22-36). Dashed lines also subdivide the plots by site (reef, seagrass, 
sand). The two columns within each site presented the results from the two D7000 cameras. 

 

Figure 14. Main diagonals of the normalized error matrix assessed with the data used for training 
for two cameras at all three of the Miami dataset sites:   The first column in both the left and right 
panel of this figure contains the cells from the main diagonals shown in Figure 12. The other 
columns are from similar error matrices computed for the camera (D7000 with 24 or 56 mm lens) 
and site (reef, sand, seagrass) combinations shown. Colorbar indicates accuracy as a percentage. 
Rows represent class numbers that were defined in Table 2. 



24 

Overall, the results of the accuracy assessment with the data used to train the classifier were 
promising (Fig. 14). The median producer’s and user’s accuracies for all cameras and sites were 
83% and 71% respectively, which was very high for 36 classes. 

Results for the identical analysis using an independent validation dataset (Fig. 15) did not have 
as high accuracy as those using the training dataset (Fig. 14). Note that some of the classes were 
highly accurate even in the validation dataset. For example, sand (class #5) at the sand site 
(middle pair of columns) was nearly perfect (Fig. 15). Sand, and mixed sand and seagrass 
(classes #5, 6) were also highly accurate in the seagrass site (Fig. 15). Some of the munitions had 
high accuracy, whereas others had very low accuracy (Fig. 15). 

 

Figure 15. Main diagonals of the normalized error matrix assessed with independent validation 
data for two cameras at all three of the Miami dataset sites:   This figure is the same as Figure 14 
except that the data used for validation were independent of the data used for training the 
classifier. 

Consolidating the results into fewer classes did improve the class accuracy, as expected. In fact, 
a binary munitions/not-munitions classification scheme yielded > 80% accuracy for most 
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combinations of cameras and sites (Fig. 16). The remaining deficiencies, even with this reduced 
binary class scheme, were false positive matches for munitions in the reef and seagrass sites. The 
evidence for this was high producer’s accuracy (all munitions were classified as munitions) but 
low user’s accuracy (many pixels classified as munitions were actually something else). 

 

Figure 16. Main diagonals of consolidated versions of the normalized error matrix assessed with 
independent validation data for two cameras at all three of the Miami dataset sites:   This figure is 
the same as Figure 15 except that the data have been collapsed from the full 36 classes to a binary 
scheme of munitions / background (Table 2). Note the high false positive rate in the reef and 
seagrass sites for identifying munitions characterized by high producer’s and low user’s accuracy. 

In summary, the 2-D classification of the Miami dataset had excellent performance on its own 
training dataset, though less so on the validation dataset. Nevertheless, simple class schemes did 
well even on the validation dataset. The sand site, using the high-resolution (longer focal length) 
cameras, had > 84% accuracy with a binary munitions/not-munitions scheme, which was better 
than the same site classified using the lower resolution D7000 data (Fig. 16). The higher-
resolution D7000 camera did not always produce better results, however (Figs 14 - 16). The 
weakest point of these results was an over-classification of munitions (too many false positives). 
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4.2.3 Miami Dataset 2.5-D Results: The same type of analysis used above, for the multiple 
camera, multiple site, Miami data also illuminated the differences between data processed using 
only 2-D information versus data processed using both the standard 2-D Girona features along 
with the extra 2.5-D information on height (Fig. 17). Like figures 14, 15, the columns of figure 
17 correspond to main diagonals extracted from error matrices for different datasets, and the 
rows correspond to different classes defined in Table 2. Also like figures 14 and 15, separate 
panels of figure 17 contain information from the producer’s and user’s matrices. Unlike figures 
14 and 15, however, Figure 17 has two versions each of the producer’s user’s images. One 
version corresponds to the results from the standard 2-D Girona algorithm whereas the other 
corresponds to the results from the modified 2.5-D algorithm. Note that independent evaluation 
data were used for all of these evaluations. 

 

Figure 17. Main diagonals of the normalized error matrix assessed with independent validation 
data for four datasets processed with both 2-D and 2.5-D methods:  Like Figures 14, 15 rows are 
defined by classes in Table 2. Columns correspond to one of 4 datasets that were processed with 
both 2-D and 2.5-D methods, 2 each in reef and seagrass habitats. The data processed with only 2-D 
algorithms had lower accuracy that the data processed with 2.5-D algorithms. 

Adding the 2.5-D information did not change the results for the individual seabed classes very 
much, but it made a dramatic improvement in the accuracies of the munitions classes (Fig. 17).  
Most of the accuracies of the munitions classes using just 2-D were 0-80% range whereas these 
improved to 50-100% accuracy using the 2.5-D information (Fig. 17).  Furthermore, adding the  
2.5-D information improved the specific problem observed with the 2-D data, namely false 
positives for the munitions. This was evident in the error matrix by improved user’s accuracies, 
relative to the strictly 2-D results. Note this improvement was observed even on a per-class basis, 
not just on the reduced binary munitions/not-munitions scheme. 
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Qualitatively, the improvement was evident on the imagery itself (Fig. 18). Results from the 2-D 
algorithm did classify the munitions correctly, but they overclassified the background as 
munitions (Fig. 18D). Resutls from the 2.5-D algorithm retained the high performance 
identifying even the types of individual munitions, but also greatly reduced the number of false 
positives (Fig. 18B, 18E). 

 

Figure 18. Qualitative comparison of images processed with both 2-D and 2.5-D methods:   (A) 
Mosaic generated from ~20 individual, overlapping images, which was produced as part of the SfM 
process to derive height. (B) Greyscale version of (A) with areas classified as munitions highlighted 
in red. (C) One of the original images that was used to make (A). (D) A classified version of (C) 
produced using only 2-D methods. (E) Zoomed in portion of (B) for comparison with (D). Note that 
there are many fewer false positives in (E) than (D). 

4.3 Dataset 3: HUMMA (Deep Water), Hawaii 
Fewer, and different, classes were used for the HUMMA dataset (Table 1) than for the Miami 
dataset (Table 2). The results were analyzed in the same way, however. As for the Miami dataset, 
the Girona algorithm performed well on the HUMMA dataset when evaluated against the data 
used to train it, and less well when evaluated against independent validation data (Fig. 19). The 
accuracies for the HUMMA dataset with validation data, though low generally, did were not 
uniformly poor. The sand class, in particular, was very accurately classified even with the 
independent validation data (100% producer’s, 83% user’s accuracy). The confusion among the 
other classes (#2-7; Fig. 19) was mostly due to munitions being classified as “debris.”  
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Figure 19. Main diagonals of the normalized error matrix assessed with the HUMMA dataset:   
Rows correspond to “all classes” defined in Table 1. The first column in both the left and right 
panel of this figure was produced from the training data used to define the HUMMA classification. 
The second column in both the left and right panel of this figure was produced from the 
independent validation data. Colorbar indicates accuracy as a percentage. Note the accuracy of all 
classes except sand (#1) declined substantially in the validation dataset relative to the training 
dataset. 

Consolidating the HUMMA classes to a binary munitions/not-munitions scheme (Table 1) 
revealed a different pattern than was seen in the Miami data. The HUMMA data had high 
accuracy for the non-munitions classes but low producer’s accuracy and high user’s accuracy for 
the munitions classes (Fig. 20). The Miami dataset, in contrast, had high producer’s and low 
user’s accuracy for the munitions (Fig. 16). Thus, the HUMMA dataset underclassified 
munitions (too many false negatives) as opposed to the Miami dataset where munitions were 
overclassified. 

 

Figure 20. Main diagonals of the reduced normalized error matrix assessed with the HUMMA 
dataset:   Rows correspond to “binary” classes defined in Table 1. The first column in both the left 
and right panel of this figure was produced from the training data used to define the HUMMA 
classification. The second column in both the left and right panel of this figure was produced from 
the independent validation data. Colorbar indicates accuracy as a percentage. Low producer’s and 
high user’s accuracy for munitions in the validation dataset indicates false negatives, or 
underclassification, of munitions. 

Examining the validation images reinforced the interpretation derived from the error matrices. 
As expected from row 1 of Figure 19, the validation images confirmed that the background sand 
in the HUMMA images was accurately classified (Fig. 21). Looking just at the full-frame images 
(top row of Fig. 21) one can see that the areas classified as munitions or debris (shown in shades 
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of red) were quite spatially homogenous, and not scattered across the backgound part of these 
images as had been observed in the Miami seagrass site (Fig. 18 were not classified as sand, 
which can be seen with the cropped versions of the images in the second row. The nature of the 
misclassification was also shown in the second row: many parts of the munitions were classified 
as “debris” of (Figs. 21 A, C, D). Note that actual debris was not usually classified as munitions, 
however (e.g. Fig. 21 B). 

 

Figure 21. Example images from the HUMMA validation dataset:   The top row shows four images 
from the independent validation dataset. The bottom row shows magnified portions of the 
corresponding images in the top row. Dark red pixels were classified as “debris” (Table 1, class #7). 
Light red pixels were classified as some type of munitions (Table 1, classes #3-6).  Note that parts of 
munitions were often classified as debris, (A, C, D) but that debris was often classified correctly (B) 
and there were few to no false positives (high user’s accuracy for sand). 

4.4 Image Classifier 2: WRT Features Applied to Miami Data 
For each of the 63 WRT features, the distance between the mean (or median) value for the 311 
background ROI samples and the mean (or median) value for the 63 target ROI samples was 
computed using four metrics: (1) Mann-Whitney and Wilcoxon Rank Sum, (2) Information Gain, 
(3) Mahalanobis and Fisher linear statistics, and (4) the Gini Index (Figure 22). The metrics 
represent simple univariate (or multivariate) feature selection filters that assess the discriminate 
power of each feature individually (and independently).  The distance scores were correlated to a 
large degree with a few exceptions. These class distance metrics utilize different information 
about the feature set to derive scores and are not directly comparable.  A more complete 
selection methodology should utilize rank aggregation or decision tree techniques in order to 
combine the metrics and create a master ranking. Nevertheless, after taking into account all 
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distance measures, the eight features that had the largest average distances between the target 
and reference samples were the following (first 4 are marked on Fig. 22): 

1. Sum of Covariances (Smoothness) [sumacov] feature #44 
2. Sum of 1D Mean Values (Smoothness) [oneDmean] feature #51 
3. Gray Level Homogeneity [GLHhomogeniety] feature #20 
4. Cluster Prominence [clustprom] feature #11 
5. Texture Feature Coding Method Code Entropy [TFCMSB2] feature #62 
6. Texture Feature Coding Method Code Entropy [TFCMCV] feature #54 
7. Number of Pixels Above 80% Max Threshold [NoPixelsGTthresj] feature #42 
8. Along/Across Image Run Length [altrkLP] feature #35 

 

Figure 22. Normalized distance scores between target and background samples for each of the 63 
WRT features relative to top performing feature (symmetry):   The four distance metrics were 
Mann-Whitney and Wilcoxon Rank Sum (black), Information Gain (blue), Mahalanobis and Fisher 
linear statistics (red), and the Gini Index (green). Note that the Fisher sum distance metric seems to 
reveal several features that have larger average distances than the other features. 

Inspecting the histograms of features that were shown to have large mean (or median) distances 
between the target points and background points showed that indeed the distributions of these 
two classes were quite different for widely separated features (Fig. 23). Most importantly, the 
features that had large distances between target points and background points accurately 
discriminated between the targets and background (Fig. 24). Overall accuracy discriminating 
targets from background using WRT feature #51, 1D Mean, and feature #44, sum of covariance, 
was 90%. Overall accuracy discriminating targets from background using WRT feature #42, 
number of pixels over the 80% threshold, and feature #22, roundness was also 90%. 
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Figure 23. Histograms of single-feature values over 476 ROIs for three of the top performing 
features:   Left: Sum of Covariances, feature #44 in Fig. 22. Center: Cluster Prominence, feature 
#11 in Fig. 22. Right: Gray Level Homogeneity, feature #20 in Fig. 22. Note that in each case, the 
distribution of target values for the feature (red line) was much different than the distribution of 
values for the background ROIs (blue line). 

 

Figure 24. Quadratic discriminant functions applied to two pairs of WRT features:   Left: WRT 
feature #51, 1D Mean, plotted against feature #44, sum of covariance. Right: WRT feature #42, 
number of pixels over the 80% threshold, plotted against feature #22, roundness. In both plots, red 
circles represent targets and blue dots represent background, or clutter, pixels. Quadratic 
discriminant functions have been plotted (blue lines), which minimize the probability of 
misclassifying a new feature vector. Note that the classes were generally well separated.  

5 Conclusions and Implications for Future Research 
The long-term goal of our research is to incorporate optics into a multi-modal approach to 
UWMM surveys. In order to accomplish this goal, automated analysis of large volumes of 
seabed imagery will be necessary to detect and ultimately classify munitions, discriminate 
munitions from clutter, and classify the surrounding seabed type. We identified a roadmap for 
developing such automated image analysis capability and for integrating imagery into surveys 
with other complementary instruments (Fig. 1). Before making the investment to follow that 
roadmap, however, it seemed prudent to evaluate the potential of our existing seabed 
classification algorithm in order to address questions such as: “is automated image analysis for 
munitions feasible at this time?” “is further algorithm development necessary?” “will fusion of 
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multi-modal datasets complement the image-based approach?” Thus, the short-term goal of this 
project was to reduce the risk of investing in extensive algorithm improvement by demonstrating 
the performance of an existing seabed-image classification algorithm and the potential benefits 
of improving that algorithm, or one like it. Three objectives were accomplished to achieve this 
short-term goal. 

Objective 1: Evaluate the potential for automated classification of underwater seabed images to 
improve both wide-area and detailed surveys for UWMM.  

One result from this project was the indication that an existing seabed-image classification 
algorithm developed by our group does have promising potential to classify not just munitions 
vs. background clutter, but also to discriminate seabed types and even different types of 
munitions from one another. The image classifier by itself was shown to distinguish munitions 
from non-munitions (background) with generally high (> 80%) accuracy (Figs. 16, 20). This was 
accomplished at multiple sites in both shallow depths over seagrass, reef, and sand, and at depths 
greater than 500 m in sand. 

The image classifier by itself did not always achieve > 80% accuracy, however, even with a 
binary munitions/non-munitions scheme. In the Miami dataset, false positives were observed 
over reef and seagrass (Fig. 16), whereas in the HUMMA dataset, false negatives were observed 
due to confusion of munitions with other anthropogenic clutter (Fig. 20). These limitations 
indicated that there is indeed a need for improvements to the algorithm. 

Objective 2: Evaluate the potential for automated classification of underwater seabed images to 
improve characterization of the environment surrounding UWMM by discriminating bottom 
types in general (rock, sediment, seagrass etc..) as well as identifying specific coral species. 

Discrimination of general seabed types was high for the major seabed types. For example, sand 
and mixed sand-seagrass were classified with 80-100% accuracy in both the Miami and 
HUMMA datasets, even when evaluated using independent validation data (Figs. 14, 15, 19). 
Coral, even at the species level, was also classified with > 80% accuracy in the training dataset. 
Due to the low coral cover at the test sites (~3%). there were not enough samples of corals in the 
randomly selected validation dataset to evaluate these classes with independent validation data. 
Performance of the classifier on the training data was similar for coral species and munitions 
types (Fig. 14), and the increased accuracy for the coral class when using 2.5-D data vs. 2-D data 
only was also similar to that observed for the munitions classes (Fig. 17). 

As was the case for the munitions classes, the Girona algorithm by itself did not always achieve 
> 80% accuracy for all seabed classes. Some of the errors in seabed classification were the 
converse of those observed for munitions. Namely, the munitions were overclassified (false 
positives), so by definition, the seabed classes were underclassified (false negatives). On the 
other hand, some of the errors among the seabed classes were due to the “fuzzy” nature of the 
boundaries between some natural classes. “Seagrass”, “sand and seagrass”, and “sand”, for 
example are three class labels that divide what is really a continuous gradient from 100% 
seagrass to 100% bare sediment. Likewise, the difference between turf algae, crustose-coralline 
algae, bare substrate, and sand in the reef site are also gradations along a continuum. 
Distinguishing among classes with fuzzy boundaries like these is a challenge even for human 
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analysts. Beijbom et al. (in review), for example, found that inter- and intra-observer variability 
was much higher for turf and crustose-coralline algae than for coral genera. 

Objective 3: Test the assumption that further improvements to the current generation of seabed 
classification algorithms will yield further improvements in the ability to discriminate munitions 
and aspects of the environment, such as coral species identification. 

In order to test whether classification accuracy could be improved with further algorithm 
development, we tested one of many ideas we have for extending the existing algorithm. The 
extension that was developed used stereo reconstruction derived from overlapping views of the 
same area of seabed to generate additional features based on local relief.  The results showed that 
incorporating such so-called “2.5-D” data greatly improved the classification results (Figs. 17, 
18). Using the 2.5-D information reduced the number of false positives for munitions in the 
Miami dataset, increasing accuracy from the 0-80% range to the 50-100% range (Fig. 17). 
Furthermore, these improved accuracies were observed not only on the basic, binary munitions / 
non-munitions classes; adding 2.5-D information improved the capability to discriminate 
different types of munitions from one another. Improvements gained by adding one extra source 
of information (2.5-D data) suggest that adding other additional data, such as object morphology 
derived from the images and other data derived from complementary sensors, would be a logical 
next step for further accuracy improvement. 

Another result of this project was to eliminate some potential future development paths. It was 
shown that the Girona algorithm and the WRT features, a different set of 2-D image features, 
achieved similar overall accuracies. Thus, we conclude that adding more statistical or texture-
based 2-D features to the algorithm, while always possible, probably would not result in large 
gains in accuracy. This result was useful because it is just as valuable to eliminate potentially 
unproductive development paths as it is to conceive of new ones. 

Next steps: This SEED project demonstrated that automated classification of underwater seabed 
images has the potential to improve both wide-area and detailed surveys for UWMM by 
identifying munitions themselves as well as characterizing the environments surrounding 
UWMM. Automated classification at high levels (e.g. munitions types or coral species) was 
possible, though much more robust when the 2.5-D algorithm was used than when the strictly 2-
D algorithm was used. Therefore, we expect that further improvements to the current generation 
of seabed classification algorithms will yield improvements in the ability to discriminate 
munitions and aspects of the environment, and suggest that this should be the next step towards 
incorporating underwater imagery into a multi-modal approach to UWMM surveys 

Based on the WRT features and 2.5-D experiments, the most promising way forward will add 
fundamentally different types of data to the basic color and 2-D texture features. Adding 2.5-D 
or shape features or data from other complementary sensors are different than just adding new 2-
D texture features because the former is really fusing new information into the problem as 
opposed to the latter, which consists of just processing the same existing data in different ways. 
Two new objectives that are logical next steps given the results of this SEED proposal are: 
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Next Objective 1: Improve the automated detection and discrimination of underwater military 
munitions (UWMM) by fusing optical features derived from underwater images (in particular 
shape, 2.5-D relief, and image texture) with magnetometer and acoustic datasets. 

Next Objective 2: Improve the automated detection and discrimination of benthic organisms, 
specifically corals, by incorporating shape and multi-scale features into optical seabed 
classification algorithms. 

As originally outlined in the gray box of Figure 1, we continue to feel that the greatest practical 
use of seabed imagery for UWMM mapping and remediation is automated processing of image 
data that is synchronized/co-located with sonar or magnetics data. Fusing optical imagery with 
these other data types would improve the performance of classifications based on the suite of 
data relative to using any one data source alone. An efficient next step would addresses 
objectives 1 and 2 in parallel, thereby allowing for progress toward objective 2 over the duration 
of the project to “feed back” by also improving objective 1 (Fig. 1). The common starting point 
for both objectives will be the existing Girona algorithm with the 2.5-D extensions. The 
approach for objective 1 will start with the existing optical algorithm as-is, and combine it with 
classification methods for complementary acoustic and magnetic datasets. The approach for 
objective 2 will be to improve on the existing optical algorithm by incorporating new features 
based on shape and scale. By building on the base of existing underwater characterization 
technologies, we envision that the proposed multi-modal approach will yield similar benefits to 
those realized under previous terrestrial wide area assessment projects. 
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Appendices: 
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